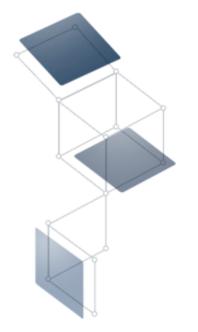
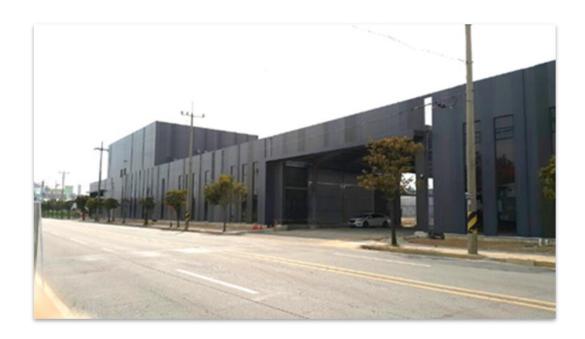

MONOTECH GREEN TECHNOLOGY



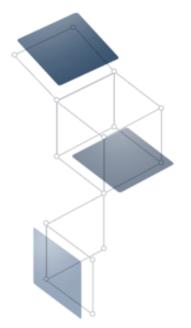
1

NOVEMBER 2023

Introduction of Monotech

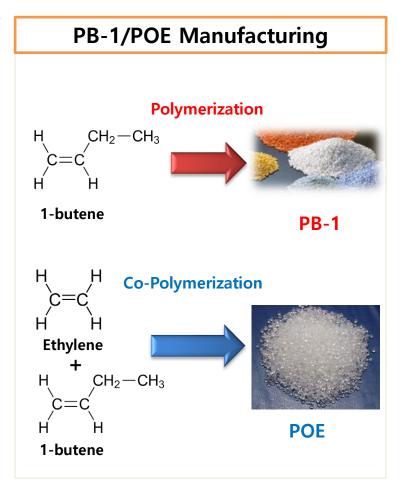

I. /


Introduction of Monotech


A research-oriented company with expertise in eco-friendly technology of polymer/inorganic materials and industrial waste recycling

CategoryD	Information
Company Name	Monotech
Esteblishment	05.Aug.2016.
Equity	1 billion Korean Won
Main Biz.	Development of Ecofriendly Technology - Polymer/inorganic materials(Polybutene-1/POE) - Industrial waste recycling(Waste Aluminum dross, Spent catalyst, Industrial slag Recycle)
R&D/Plant site	283, Saneop-ro, Gwangyang-si, Jeollanam-do, Korea (Gwangyang National Industrial Complex)

II. /


Technology of Ecofriendly Materials

Technology of Polybutene-1/Polyolefin elastomer(PB-1/POE) Production

- **Sole International Licensor of PB-1/POE Production Technology**
- > Eco-friendly alternative plastics of rubber which can be recycled
- High-functional pipe materials which has the best physical properties in existence

Polybutene-1/Poly Olefin Elastomer

- Recyclable & High functional Polymer Material Production Technology
- Sole International Licensor of PB-1/POE swing plant technology
- PB-1/POE is a highly functional polymer product that can be recycled as unique alternative of PE-XL and rubber that cannot be recycled.

Application of PB-1/POE

■PB-1

- ➔ pipe : Hygiene(water/hot water supply), M/S 80%
- → Under floor heating Pipe : M/S 30%
- → Packaging film(Easy opening)

•POE

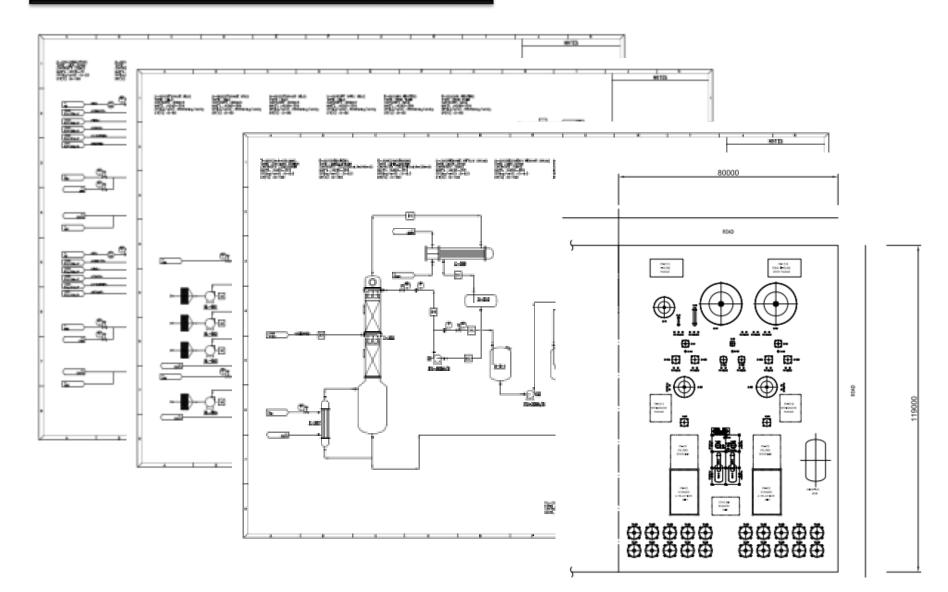
- → Alternative of Rubber (Shoe, cable etc)
- → Impact modifier : Interior & Exterior material for automobile



PB-1 Plant License (Korea Yeosu)

- Capacity : 10,000TON/년
- Establishment : 2009. 04
- Location:
 Ylem Technology
 Yeosu Industrial Complex,
 Korea

PB-1 Plant License (China)


- Capacity : 30,000TON/yr

- Establishment : 2017. 05

Location:
 RIDA Chemical Co., Ltd.
 Tengzhou, Shandong
 Province, China

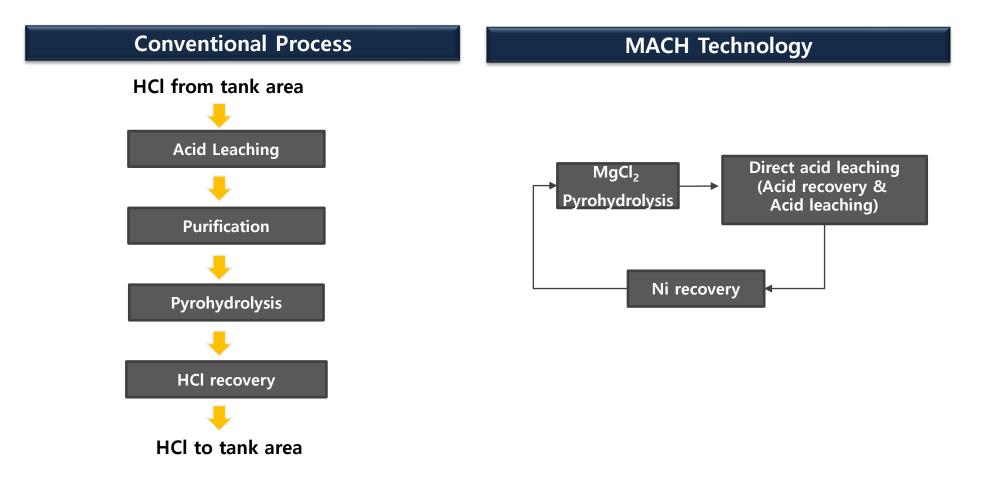
Licensing Document(P&ID) of Chinese PB-1 Plant

A part of Chinese PB-1 Plant Design(P&ID)

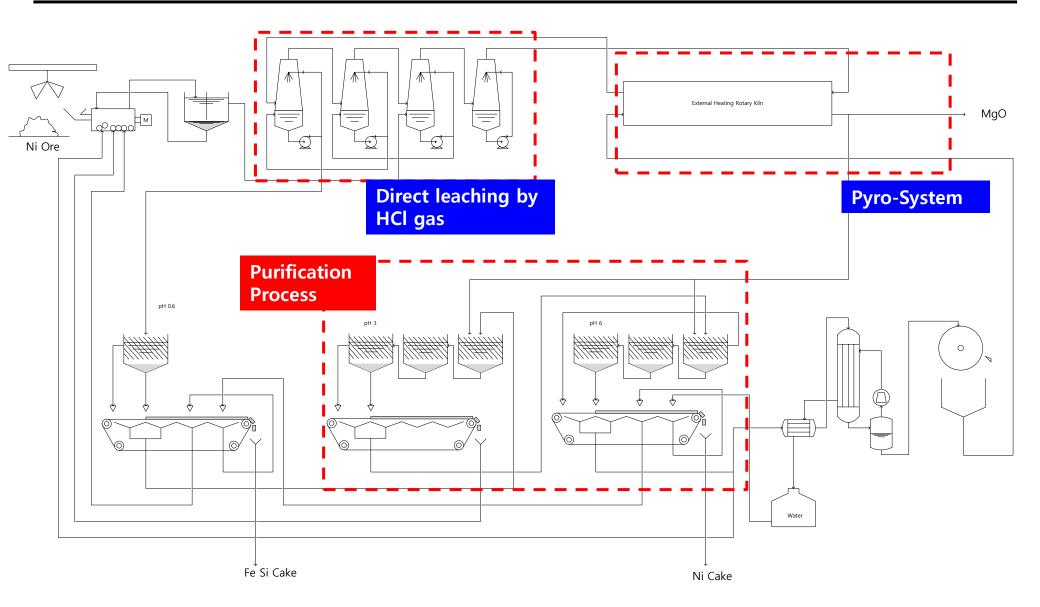
Technology of Hydrometallurgical Nickel Ore Concentration for battery raw material production

(MACH Process: Advanced Clean Hydro-metallurgy Process)

New technology that significantly reduces CO₂ emissions

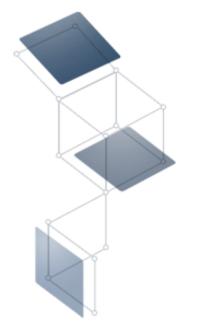

Very low investment cost compared to existing smelting plant

Waste-Zero eco-friendly process different from the existing process that generates toxic waste


Process	Smelting	HPAL (High Pressure Acid Leach)	Developing Tech.(MACH)	
Raw Material	Laterite Ore	Laterite Ore	Laterite Ore	
Technology	Production of ferronickel by smelting/reduction process	Nickel concentration by acid leaching at high temp.(250~270°C), high pressure(40~50bar)	Nickel concentration and to other product from waste at atmospheric, mild temp. (~80°C)	
Process	Nickel ore → Drying → Preliminary reduction → Melting (>1,500 °C) & reduction → Separation of FeNi slag → Refining → Casting → FeNi	Nickel ore → water mixing → autoclave → Neutralization → Precipitation of sulfide metal → autoclave → Solvent extraction → autoclave (hydrogen reduction) → Ni powder	Nickel ore → Acid leaching → 1 st Purification → 2 nd Purification → Highly concentrated Nickel compound	
Investment Cost (100 million ton/yr)	800 million USD	800 million USD	200 million USD	
Final Products	FeNi	Ni metal	Ni compounds, Fe _x O _y , SiO ₂ , MgO	
lssue	 High electric cost High investment cost Enormous waste 	 High electric cost High investment cost Complicate process step 	 Low energy cost Lowest investment cost Simple process Various high purity products 	
Energy consumption & Global warming gas emission	High	Medium	<u>Very Low</u>	

Key Technology of MACH process

- MACH process combines hydrochloric acid recovery and acid leaching step into one step. (direct acid leaching using HCl gas)
- There is no liquid HCl storage tank and no risk of HCl leakage because of HCl transfer in process area.


Process Block Diagram

Pilot Plant Facilities

Equipment	Amount	Usage
Pyrohydrolysis System	1 EA	MgCl2 pyrohydrolysis HCl gas generation
Leaching System	2 EA	Acid Leaching
Reactor	10 EA	Mixing/ Purification
Filter Press	3 EA	Solid/Liquid Separation

III. / Technology of Industrial waste recycling

Waste Catalyst Treatment Technology for Precious Metal(Mo, V, Ni) Recovery

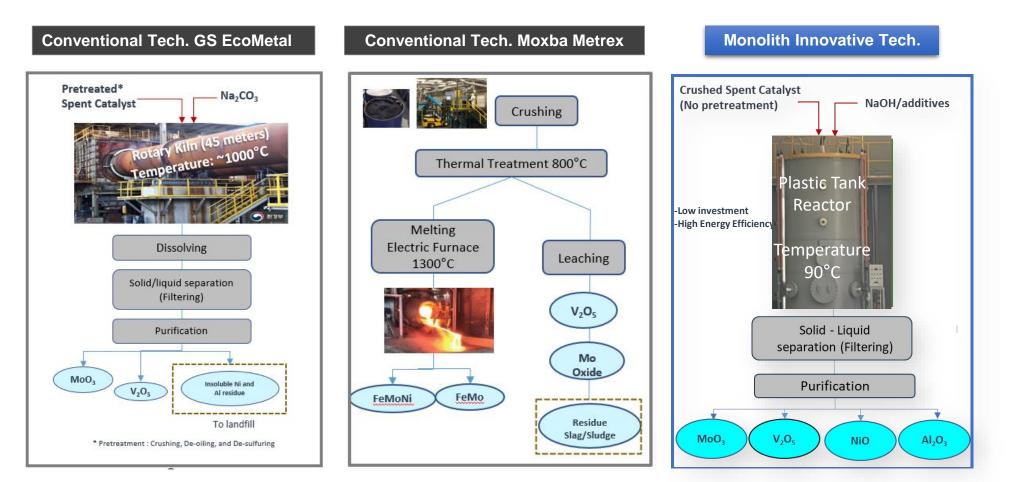
- > Applying Monotech Waste Minimizing Technology
- The world's best technology preventing precious metal resources from overseas leakage
- Clean technology without toxic waste (Solid, Liquid waste zero)
- Essential core technology for refineries to comply with the Basel Convention in the future
- CAPEX/OPEX minimize

SPENT CATALYST

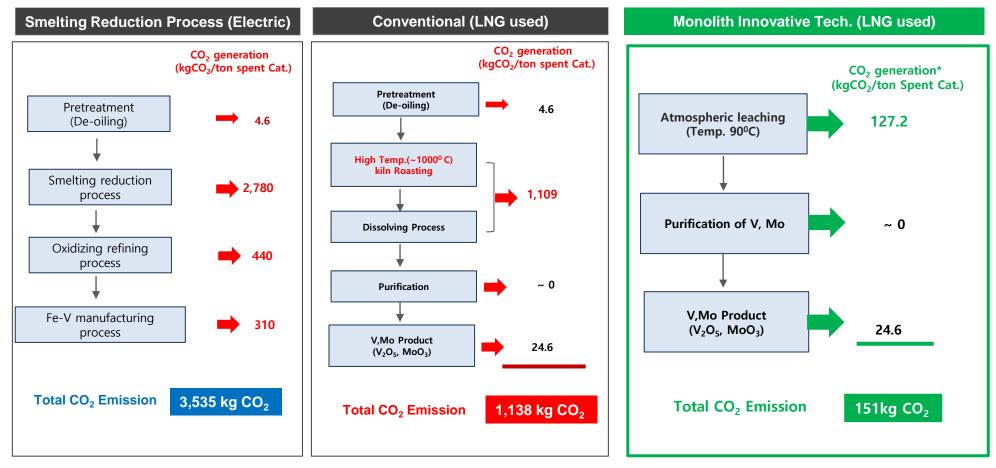
We offer commercially attractive and environmental approved recycling for all your catalysts. Depending on specific metal compounds and impurities the most competitive terms will apply.

In case no valuable metals are present, we offer competitive treatment charges.

Our proposal is most competitive for catalyst containing;


- •Precious metals (Pd, Pt, Au, Ag, Rohdium, Ruthenium) (, etc.)
- •Molybdenum (NiMo, CoMo, etc.)
- •Nickel (including Nickel Raney)
- •Tungsten
- •Copper
- •Zinc
- •Cobalt
- •Vanadium

Comparison of conventional and Monolith processes


Excellent economic efficiency.

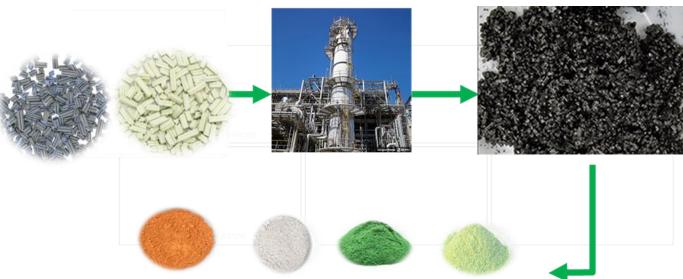
Processed at low temperature (90°C).

Reduce carbon emissions.

Reduces carbon emissions by up to 3 tonnes per compared to conventional processes.

Based on Korea Environmental Industry & Technology Institute, 2009 : National LCI (Life Cycle Inventory) database Guideline

(* CO2 Generation : The amount of heat required for each process is converted into the amount of CO2 generated when using LNG.. (56,100kgCO2/TJ)



V2O5 (>99%)

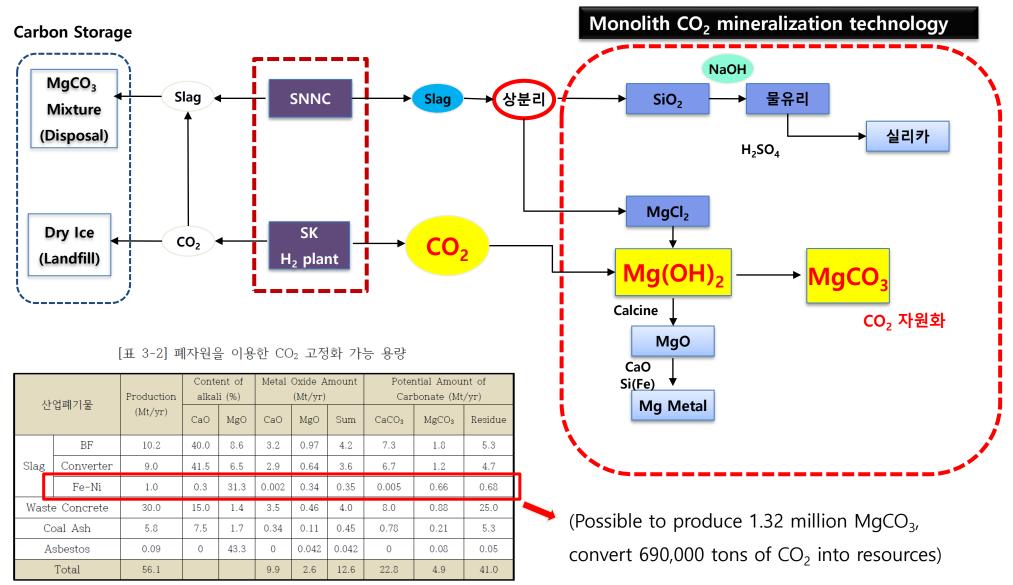
Ni(OH)3 (>99%) MoO3 (>99%)

Al(OH)3 (>99%)

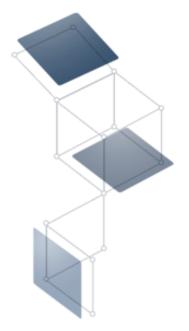
Pilot Plant 5 tons ~ 3000 tons in Korea & Bahrain

Economic value of waste catalyst treatment technology

- Development of treatment technology is urgently needed due to the increase in landfill waste due to the increase in the amount of waste catalyst generated and the strengthening of environmental regulations.
- Technology development can create an economic effect of \$200 million per year and environmental conservation
- GS Ecometal* Sales: KRW 69.7 billion in 2018, KRW 53 billion in 2019
 - (*GS Ecometal : Korean Waste catalyst treatment company)


Necessity of developing technology for desulfurization waste catalyst treatment		Economic	Effects of De	eveloping Tec	hnologies
Continuous increase in	•The air pollutant emission standard strengthened by about 30%	Economic	impact of	200 millio	on USD/yr
waste catalyst	 Increase in desulfurization catalyst usage due to increase in sulfur content of crude oil 	as	s a major rav		
	•Landfill waste increases in proportion to the increase in spent catalyst (1 ton of	for special	alloys and s	econdary bat	tteries
Increase in landfill waste	 waste/1 tons of waste catalyst treatment) In the case of GS Ecometal, only Mo and V are recovered, and the excess solid waste 	Precious Metal Compound	Recovery (Ton/yr)	Unit Price (USD \$/TON)	Amount (USD \$)
	disposed of in landfill.	V ₂ O ₅	8,000	15,232	121,856,000
Status of waste	•Currently, exported overseas due to lack of domestic processing facilities	MoO ₃	4,000	12,053	48,212,000
		Ni(OH) ₂	2,250	9,429	21,215,250
catalyst treatment in	 When securing a treatment facility, it is possible to secure the waste catalyst that 	AI(OH) ₃	27,500	292	8,030,000
Korea	is exported in accordance with the Basel Convention	SUM	41,750		199,313,250
		50,000	ton/yr Domestic was	te catalyst treatment,	, price Source: LME

Magnesium hydroxide recovery from Fe-Ni slag and carbon dioxide fixation technology using it


- The only technology to solve the issue of toxic waste in the steel industry
- CO2 immobilization technology to secure blue hydrogen production base
- Securing raw materials of magnesium alloy for automobile weight reduction
- > The world's sole economical toxic slag recycling technology
- Existing Pilot plant for verification of technology

Monotech's CO₂ mineralization technology using Monolith's Fe-Ni slag

Manufacture of magnesium carbonate (MgCO3) used as a building material by fixing/mineralizing CO2 with magnesium hydroxide (Mg(OH)2) recovered from monolith's existing slag treatment technology.

Source: Report of Korea Institute of Geoscience and Mineral Resources(2011)

V. Appendix.

Analysis Lab

Bench Scale Facilities Int/Sol Reactors

1m3 reactors system

Appendix. Monolith R&D Facilities(Suwon)

F MONOLITH

Equipment

Comma Coater

ESR 측정기

Planetary mixer

End of Document

Polybutene-1

PB-1 manufacturing	Main Application & Market	Forecast	
1-Butene C4H8	Piping materials	Ackaging materials Additive Polymers Additive Polymers Additive Polymers Additive Polymers Additive Polymers Additive Polymers Additive Polymers Flexibility	her
	Market Drivers	2017-19 2019-21 2021-24 Impact	
	Increased application of Polybutene-1 (Resin)	Moderate High High	
Polybutene-1 Polymerization	Growing demand for polybutene-1 from emerging economies	High High High	
	Source: Zion Market Research Analysis, 2018		

Key Player(Only two Licensor)

Butene-1 is mainly used in the production of high-quality plastics such as polyethylene and polybutene-1. Important applications of Butene-1 are packaging materials such as films, bags, and food packaging. ³¹

MONOTECH CO., LTD Seoul, Korea Middle East Operation Center, Bahrain

monotech@k-monotech.com www.k-monotech.com

PB-1 Characteristics

- ✓Flexibility
- ✓Creep resistance
- ✓Thermal pressure resistance
- ✓Pipe weight saving
- ✓Acoustics / Noise absorption
- ✓Impact resistance
- ✓Chemical resistance

PB-1 added to concentrates can significantly lower the pressure needed to extrude PP fiber and reduce agglomeration in compounds.

PB-1 added directly to PP will improve the flow characteristics, especially in high molecular weight.

Downstream PB-1 Pipe & Fitting Production

PB-1 added directly to PP will improve the flow characteristics.

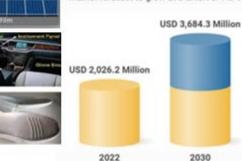
make packaging 'Easy-Open'

Floor Heating System

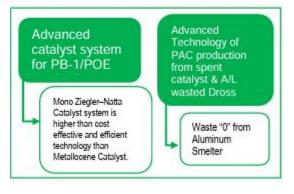
Polyolefins Technology & Scientific and Technical Services

PB-1/ POE Licensor

Monotech Advanced Energy Research Institute


What we do?

- Polybutene-1/POE Production Technology PB-1/PE-RT Pipe manufacturing Technology
- 2. Technology of Hydrometallurgical Nickel Ore Concentration for battery raw material production
- 3. Spent Catalyst Treatment Technology for Precious Metal Recovery -Co, Cu, Mo, Ni, V, W, Zn
- 4. Technology of PAC (Polyaluminum chloride) Production from waste catalyst & A/L Dross Recycling.
- 5. Non-Ferrous Scrap Metals Trading & Recycling.



Expansion with production capability

Monotech is planning to start new differentiated polyolefin products to the marketplace by focusing on advanced catalyst and process technology and delivering value to our customers globally.

What is Polybutene-1(PB-1)

What is Polybutene-1(PB-1)

Polybutene-1 is produced by polymerization. of 1-butene using supported Commercial Ziegler-Natta catalysts. PB-1 is a high molecular weight, linear, isotactic, and semi-crystalline polymer. PB-1 combines typical characteristics of conventional polyolefins with certain properties of technical polymers.

What is C4-Polyolefin Elastomer?

- Polyolefin elastomers (or POEs) are a relatively new class of polymers that emerged with Monolith's advanced in Ziegler-Natta polymerization catalysts. Representing one of the fastest growing synthetic polymers.
- Polyolefin elastomers (POEs) have become one of the leading materials used in automotive exteriors and interiors, wire and cable coatings, extrusion coating, films, injection molding, medical products, adhesives, footwear, and foams.

Polybutene-1 /Polyolefin Elastomer Swing Plant Technology.

POE production plant in conjunction with Polybutene -1 production plant.

ww.k-monotech.com

Polymer Technology, Waste to Energy

Polyolefin Technology Scientific Technical Service

> Jong Wook Park Director Strategic Engineering Integration

M. +1 765 421 5585 M. +82-10-9772-4430 E. Jong.park@k-Monotech.com

www.k-monotech.com

Polymer Technology, Waste to Energy

THANK YOU